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Let U be the WT-space spanned by a WT-system {ugy,...u,_,} on (a,b). A
function f is generalized convex with respect to {ug,...,u,_,} if either f€ U or
{ug s Uy S} 1s 2 WT-system. We identity two rather general conditions
(“connectedness” and “joinedness”) that, when satisfied by U, guarantee the
transmittal of certain properties enjoyed by the elements of U to such an f. We
characterize WT-spaces that satisfy these conditions and provide equivalent
formulations. Various examples are given and applications to spline functions are
considered. The main results are as follows: If U is connected then vanishing points
of U are zeros of f. If Uc C(a, b) is connected and joined (i.e., “perfect™) then
fEC(a,b). If U’, the space of derivatives, is a WT-subspace of C(a,b) then
f € C'(a, b) provided U" is perfect or U and U’ are joined. If U < C(a, b) is perfect
then the convergence of a sequence {f,}] of generalized convex functions to
f € C(a, b) with respect to a fairly inclusive class of seminorms implies its uniform
convergence on compact subsets of (a, b). If U and U’ are perfect and continuous
then this result extends to the sequence of derivatives {f}} as well.

INTRODUCTION

A set {ug,...,u,_,} of real-valued functions defined on a real interval is
called a WT-system (for “weak Tchebysheff”) if it is linearly independent
and for all points x, < --- <x,_, in its domain det{u,(x;)}7;},>0. The
linear span of such a system is called a WT-space. The best known example
(at least among numerical analysts) of a WT-system is furnished by the
polynomial splines, although the set {1, x, f} forms a WT-system whenever f
is convex [6,13]. Two useful references on WT-systems are (4, 12]. Were
strict inequality to prevail in the above determinants we would speak of a
“T-system.” As T-systems are particularly advantageous for numerical
applications [2], investigations into the qualitative differences between T-
systems and WT-systems have been undertaken in recent years [see, e.g.,
8,10, 11]. These studies show that when the domain is an open interval WT-
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SOME HEREDITARY PROPERTIES 115

spaces are distinguished from T-spaces solely by the presence either of
functions that vanish on subintervals (“degeneracy”) or of points in which
every element of the space vanishes (“vanishing points™). Functions that are
“generalized convex” with respect to a T-system, that is. that can be adjoined
to form a WT-system, possess many of the properties of the classical convex
functions. In an effort to extend these results to WT-systems, the author was
led to the notion of “endpoint nondegeneracy.” A WT-space is endpoint
nondegenerate (END) if it contains no functions that vanish on a subinterval
extending to an endpoint |13, 14; although END is not explicitly defined
there|. Unfortunately, this notion is too restrictive as it excludes spaces of
spline functions. Two, more fundamental, properties (“connectedness’™ and
“joinedness™} are therefore introduced in this paper in order to overcome this
unpleasant situation. Although one property was identified to deal with the
transmittal of vanishing points to generalized convex functions and the other
to handle continuity (we note, though, that END implies both connected and
joined), unexpected relations between the two concepts emerged. In Section 1
we introduce these two notions and present some basic consequences.
Differentiability is treated in Section 2, and Section 3 is devoted to several
further properties of connected and joined WT systems. Examples are
deferred to Section 4.

1. Basic RESULTS

Throughout this paper {ugy...,u, i and {u,...u,t will denote WT
systems on an open interval (a.b). and U will stand for spiu;iy
Continuity is not assumed unless explicitly stated. For points
Xgeen X, | € (a, b) we denote

O.st — 1, ol
):det{ui(,\‘;)?f./ 0

n 1’

v

Xy orer X

Thus. for all x, < -+ <x,_, <x,. we have

7 -

v

>0  and U ) >o0.
X X

-1

When no confusion is likely to result we will occasionally write

O....n—1
U( & ) to denOtC det{ui(xi)}(i Oton- 1.7/ Oton.jr k)"
X semes Xpaeeey Xy

|
s Uy gt

(1.1) DEFINITION.  {Xg,.... X,_,} < {a, b) is called a T-sef for {u,
if xo< - <x, ;and U(Q 0" ) > 0.

freeea X
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(1.2) DEeFINITION. &€ (a, b) is called an essential point for U if w(&)+# 0
for some u € U. Otherwise ¢ is called a vanishing point.

Lemma 1.3 combines several elementary results from linear algebra in
terms of (1.2).

(1.3) LEMMA. Let A be a set with at least n points.

(@) Ugy. U, are linearly independent on A iff det{u(x;)}15~" + 0 for
some Xy, X, | € A.

) If ugssu,_, are linearly independent on A then (€A is a
vanishing point for splu;}e~" iff

. 0,..,n—1 .
U< ):o (j=0ton—1),
Xgpers Xj 15 G Xjy gouees X1

for some {xy,..,x,_,} © A such that det{u,x;)}5~"' #0.

() If uy,...,u,_, are linearly independent on A and ¢ € A is essential
then there are points Xxg,..,%x, €A, including &  for which
det{u,(x)}5~" #0.

(1.4) DEFINITION. (@) {ug,.., U,_,} (or U) is called connected if for
every vanishing point ¢ € (a, b) there are points x, < -+ <Xx;_, <<
x;< -+ <x, such that {xg,..X;_y, X;;;sX,} is a T-set for some
0<J I—1, and {Xgy; X_y5 X410 X} is @ T-set for some [ <k <

(b) {ugsr ty_,} (or U) is called Jomed if n>2 and, for every essential
point £ € (a, b), there are points x, < -+ <x,_ <&=x,<x, (< <X,
such that {Xg,...,X;_ 15 Xj 15 X,} IS @ T-set for some Ogjgl—l and
{Xpseees X 15 Xgppaens X} 18 @ T-set for some [+ 1<k n.

(c) {ugyee, u,_} (or U) is called perfect if it is both connected and joined.

Our first theorem concerns the transmittal of vanishing points to
generalized convex functions such as u,,.

THEOREM. If {uy,..., u,_,} is connected and & is a vanishing point for U

then u, (&)=

Proof. Let x,,..., x, be points in (a, b) that satisfy (1.4a). Since ¢ is a
vanishing point we have
0,....n )

UV E < .
Xgpeees Xjaeeey G Xyeney Xy

0,.,n—1
—(_1\n—I+1 . e
(1) (@) U(XO,,__, xe)
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hence,
D" a8 >0 (1.6)
Moreover,
0.,....n |
oy
= (x‘,,...,x[ ,,f,x,,...,f,‘....‘.xn)
i On,n—1
=(=Y"u & U T )
D@V ]

from which we deduce that

~d

(—1)" 1, (&) > 0. (1.

Theorem 1.5 now follows from (1.6} and (1.7). 1

(1.8) DEFINITION. {ug,..,u,_,} is called a complete WT-system if
{tg,es tt;} is @ WT-system for i=0ton—1

(1.9) CoroLLARY. [If luy....u, (i Is a complete WT-system on {a.b)
and {ug...., u;} is connected for i =0 to n— 2 then the vanishing points for U
are precisely the zeros of u,. Consequently, if" such a U has no vanishing
points then it contains a positive element.

{1.10) THeEOREM. The following are equivalent:

(a)  {uge U, (} is not connected (“disconnected’).

(b) there exists a point {€ (a,b) and an OLI<n—1 such that
{Xgoes X4} is a T-set for {ug.ou, |} only if x,_, <& <Xy,

{c) there is a WT-system {(vg,...v,. ' < U, a vanishing point
E€(a, by and OKI<n—1 such that vy,...v, ;=0 on |&b) and
Uypes Uy =0 0n (a, &].

Proof. (a)=>(c). Suppose that {u,...,u,.,} is disconnected. Then by
{1.4a), there is a vanishing point & such that for all x, < --- <x, | <<
X< < x,,al 0K i - and ICh K one of (X X LX), e X,
OF { X X ys gy yoees X, 1 18 DOt @ T-set. By (1.3a) some T-set <xy.....x, !
exists, and we assume that x, |, < ¢ < x,, where 0 </ n— 1. For j=0to

n — 1 define

Uj(X) =l ( O...., n—1 ) ;

L Xganees Xj IR x‘h\ P x,, -]
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Since v;(x;) = d;; (i, j=0to n — 1) the v/s are linearly independent, hence
a basis for U. Moreover, if 4 is the (nonsingular) matrix corresponding to
this change of basis, then for all yg,..., »,_, € (a, b),

Ot — 1 Ot~ 1
U( " >=detA“~V( " )
yo""’yn—l yow-’yn—l

By substituting the points xg,...,x,_; just defined we may deduce that
{Vgses V,_} 18 @ WT-system. Further, by our choice of x,...., x,_, and & we
must have vg,...,v;_, =0 on [ b) and v,,...,v,_, =0 on (a, &]. This proves
(c).

(c) = (b). Clearly {u4,..., u,_,} and {v,,..., v, _,} have the same T-sets. Let
Yo < +++ < ¥,_,5 then a direct calculation shows that

0,...,n—1
4 )
;y()s“-’ yn‘l
V(O,...,l—l‘) V(l,...,n—l) n <<
— . iy, Yis
yO""’ y,,l yle"-s ynfl ! [
=0 otherwise;

thus (b) holds.
(b)= (a) is immediate from (1.4a). 1

As with connectedness, joinedness guarantees the transmittal of a property
to all generalized convex functions, in this case continuity.

(1.11) THEOREM. If wug,..,u,_, are continuous and {uy,...,u, ,} is
Jjoined then u, is continuous at every essential point; if {ug,..,u, |} Is
connected then u, is continuous at every vanishing point.

Proof. Let &€ (a,b) be an essential point and let x; < --- < x,_, < &=
X, <X, <---<x, be the points guaranteed by (l.4b). Let {y™} be a
sequence in (a, b) converging to & We assume that y*’ T & then for v large

enough that x,_, < y® < & we have
' O,..n—1,n ‘
0 < U( e (v)’ )
Xgseres Xjoeres X 15 Y & Xy g Xy
- 0,..,n—1 ‘
=0 u@-u(, o )
Kosmers Bjyores Xy 15 VO X1 geens X

—un(y‘”))-U( 0,.,n—1 n)g

Xgseens Xjyuuny X
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N ) - U

— - o KeR o]
i~l+lton L X Xjgeng B e X "
and0toj- I

; ; Opennt — 1 ;
i A i 1 N LA A
+ N EDT v T )
il Xy Ko s B X
tol t

where {Xgyo X; 42 XL wes Xt 18 @ Toset for {uge..,u, i By continuity of

n

Uy U,y all but the first two of these terms vanish as v’ | & hence we
may conclude that lim___ (=1 "(u, (&) —u,(y'"" )N > 0.
A similar argument utilizing the T-set {xg...Xx, [ X, X,

(+1<k<n)  yields  Hm, (1" '@,&) —u,(3") 20, i
mv-*oo(“l)n Al(un(é) - un().(v))) < 0. Thus, mr a:)(w(w 1 )n l(un(é,) - un(}“r)))
< 0 < lim, (1) "(u,(&) — u,(»")), and hence u,(»"") - u,(¢). This
proves the continuity of u, at every essential point &

The proof that u, is continuous at every vanishing point of U, under the
assumption that U is connected, is carried out in much the same fashion. We
assume that ¢ is a vanishing point and consider points x, < --- <x, | <
& <x, < -+ < x, guaranteed by the assumption that U is connected. Then for
the T-set {Xguun X; |4 X}, 0 X, |, WeE Write

/ O...nn—Lon
0gU . 4 )
L X e Sy X PN X
4 ARG Rnt kARl S R ARAT AR
Ocnt— 1
I+ () pf M RTO) z
= (—1)" u,,(y’)'(/(‘c . ‘ )+0(l)as,1" - &
L X ,

which implies that lim{—1)" ‘u,(»"")<0. By considering the T-set
[Xg s Xp 12 Xy g oo X} (L < k< n), we deduce that lim(—1)" ‘u (»*") > 0.
hence, u,( ")~ 0. Since by (1.5) u,(&) = 0, this proves the continuity of u,
at each vanishing point of U. 1

In the remainder of this section we undertake the task of characterizing
joined WT-spaces. An initial step in this direction is Theorem 1.12.

(1.12) THEOREM. [f {uy ... u,} is joined then the vanishing points of U
are transmitted to u,,.

Proof.  Suppose that U has a vanishing point ¢ such that u,(£) = 0. Since
{ug,...u,} is joined, there are points x,< - <x, ,<<=x,<
Xpgp <o <Xy, 8 0K =1 and [+ 1<hk<n+ 1, such that
1X 50y Xjo (2 Xy g X b @0 {Xxgeen X 10 X4y e X, (b are T-sets, But
then
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0,..., n-— 1’ n
o<vu ( A )

Xgaeees xjs"'9 Xnti

= (1)t (&) - U ( ():...,nn— 1 )’

Xggeers Kjarres Kpyeees Xy g

which implies (—1)"~"*'u,(£) > 0, and

0,...n—1n
0<U( )

M
X geers Kppooes Xy 11

(1)t (&) - U( O,yn—1 )’

R A
X seres Xpseers Kpaesss X o g

which implies (—1)" 'u,(£) > 0, a contradiction. 1§

(1.13) CoroLLARY. If {ug,....u, ,} is a complete WT-system such that
{ttg ey 4;} is joined for i=l,.,n— 1 then the vanishing points for U are
precisely the zeros of u,. Thus if such a U has no vanishing points then it
contains a positive function.

(1.14) Remark. 1t is evident from the proofs of the preceding results that
(1.4a) and (1.4b) are not the weakest possible definitions that would ensure
these results. For instance, to guarantee the transmittal of a vanishing point ¢
to u, it suffices to find two T-sets x; < -+ < x;_; <{<x;< -+ < x,_, and
Vo< oo < ¥y <€ Y; <o <y, such that i +/ is odd. This is clearly a
weaker condition than (1.4a).

(1.15) THeOREM. U is joined iff the vanishing points of all (n— 1)-
dimensional WT-subspaces are vanishing points for U.

Progf. If U is joined then by (1.12) the vanishing points of all (n — 1)
dimensional WT-subspaces are transmitted to U. To prove the converse,
assume that U is not joined (“disjoined™). Then there is an essential point
€ (a,b) such that for all xy < -  <x,_; <&=x; <X, <+ <x,, all
0<j<I~1 and [+ 1<kg<n, one Of {XgwesXj_ 12X s X, OF
{Xgsees X 15 X1 o0 X, } 18 not a T-set. Since ¢ is essential (1.3c) guarantees
that a T-set {x,,.., X,_1}, with £ =Xx, for some 0 /< n— 1, exists. We now
define vg,...,v,_, as in (1.10) and note that our choice of ¢ requires that
Vg Uy, =0 on [&b) and v, ,,...,v,_; =0 on (a, £}. Concerning v,, we
can only state that v,({)= 1. For arbitrary points y, < -+« < y,_, one may
easily check that
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n O, n — 1
det{v{y)li; v =V ( ’ ; )
JOrerr Dop |
O...1—1 Loon--1
=V
(1', ..... V, ,) (y, ..... v, ,)
if y,.,<&<y ., and y, <L
[0 Y A [+ 1o 1
- V( )V )
Vipoeen v S L Vo
if v, <&<y,. and v, 2 &
=0 otherwise. (1.16)

By substituting x,,...,x, , for v,...» =L
hence we may conclude that ¥( "/ ' )>0for all y, < - <¥, ,in(a.¢

Jroeea A

L in (1.16) we get V([

n

(for y,_, =¢ the determinant is zero). This implies that {v,...v, | is a
WT-system on (a, ¢]. Similarly, we deduce that {v,, ,...v, } is a WT-
system on | b). We now demonstrate that {v,....v;, .0, ety ;)05 a
WT-system on (a.b). Indeed, since vj...t; ;=0 on [&b) and
Uiy o Uy 1 =0 0n (a, €], for any z, < --- <z, , we have
O =L+ Lo -1
V| - |
il s
0...0—1 Lo — | .
:V( ) V( | it oz, <d<z
Zyeen 2 DI,
=0 otherwise. (1.17)

Since we have shown that each of the determinants in the product (1.17) is
nonnegative, this proves that {vq...t, ;. v, ...t, (| is a WT-system.
Moreover, the vanishing point & is not transmitted to U. |

(1.18) Remark. From the proof of (1.15) we may infer that U is
disjoined iff there is an essential point ¢ and 0 /< n— 1 such that
{Xgeen X, (fisa T-set for Uonly ifx, | <& <x, .

n
(1.19) CoroLLARY. (a) If all (n— 1)-dimensional WT-subspaces of U
are connected then U is joined.
(b) If no (n— l)-dimensional WT-subspaces of U have vanishing
points then U is joined.

Proof. Both (a) and (b) imply that the vanishing points of all WT-
subspaces are transmitted to U. hence, the conclusions follow from

(1.15). B

640/41:2 3
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2. DIFFERENTIABILITY

In this section we investigate conditions under which differentiability is
inherited by generalized convex functions. We therefore assume henceforth
that the functions u,,...,%,_, are continuously differentiable in (a, b). In
addition, we restrict our attention to WT-spaces U such that U’, the space of
derivatives, is also a WT-space. Such WT-spaces have been characterized in
[15]:

(2.1) THEOREM. If U is a finite dimensional linear space of continuously
differentiable functions, containing constants, then U' is a WT-space iff U
has a basis {uyy., u,_} (n22) that is a complete WT-system with u,= 1.
If this is the case then {uj,...,u,_,} is itself a complete WT-system.

(2.2) LemMma. Let {ugy.., t,_,} (n22) be a complete WT-system with
uy= 1. For points x, < -+- < X,_,

v(X" N0 g v ) = detfui(n)17; ! = 0.

xo,..., Xn_] \’71’"" n—1"7

ly,n—1

Jorall x;,  <m<x;(i=1ton—1)

Proof.
0,..,n—1
A
Xgseors Xpy_
1 0 0

u,(xo) u () —uy(xy) (e, ) —u(x, )

Uy A(%0) g (50—t () g g 3) — thy 1)

wi()—ulxg) o w(x, ) —uyx,)

Uy (0) =ty (Xg) oty (X ) — Uy (X, 5)
SXp X X

SN .
! Uy (1) -y (1, -1)

Since from (2.1) both {u,...,u,_,} and {uf,..,u,_,} are WT-systems and
U}, ), are continuous, Lemma 2.2 follows from (2.3). 1

u;("/l) ui(ﬂngl)
: : an,_, - dn,. (2.3)

xg 7x; x

As with continuity, differentiability requires that we treat vanishing points
and essential points separately.
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(2.4} Tueorem, If U’ is connected or U is joined, and n > 2, then u,
exists at each vanishing point of U’ and vanishes there.

Proof. Let ¢ be a vanishing point for U'. If U’ is connected then there

are points %, <y <&y, < - <n, such that {y...7 .
Mjstoees M i aT set for U' for some 1 <j<l ANA {7 ceee i 1s His oeees M}
is a T-set for some [+ 1<k n For xp,.. x, with x, <

B <x, < <y <<xy=E<,, <<y, < x,. (2.2)  indicates  that
1Xgyeees Xj1a Xy pones Xyt and {xo,...,xk 1+ X,y X} are T-sets for U. Thus,
for {<x <xpy,

< Ou.n—1.n
0< U( .
Xyaoon X e X e G XX s X,
i (T 0 L
-0 u (xn) u&” zztfgj. x| ut(.\:,; R ﬁ;{‘»«\'n);

un(xf)) un(é) U,,!é, '\'l I,(”(.\'{, I) ll”(XH)’i

where ;¢ x| = (y{x)— g))/(’(’ —¢) (i« 1 to n}  Expanding this
determinant, we get up&ox|- UG s L) to(l) as x| ¢
since u/(&)=0 (i=1 10 n - 1) Hence. lim,, l(Al)" Yu,lé x| > 0. By
utilizing the T-set {J\O. WXy s X geen X, we may infer that

—lim, (— 1) ", & x| = lim, {—1 )" g"a Ié.\*}}(). hence.
184 i n

mn(~1)"”u,,lé.,v},é()}ii\xlﬁ( )", | x ]
x. 1 x i

which implies that lim, , u,]¢ x| = 0. An analogous argument shows that
limy-; u,|& x] =0, so that u; (<) exists and is equal to zero.

If U is joined then. since ¢ is an essential point for U. there exist points
Vo< o<y <=y <<y, a 0= 1 and {4+ 1 <k n such
that {Vyeos V51 Vg s Vol @0d { Youne Py ys ¥yy s ¥, 1 are Tosets for UL
We may now proceed as before to show that u/(¢) exists and is zero. 1

(2.5) DermviTION.  We will say that | x(,...., X e &8 X, e X, 1S A

T*'Sef for U if Xq < v < Xy < 5 < X < < X, and
Ouesn—1
0<U* ( '
K sarey Xf . zaéq fs Xy poman Xy g

i uglxy) o uy($) uy(é) Uglx,, ) - ulx, )

|
|
P
i
|
i

Uy, l(x())"'ﬂn I(i} u:z 1(5} Uy l("\‘lkl)'”un »)('\'rr I)
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In order to prove a result similar to (2.4) about the essential points of U’,
we need the next two lemmas.

(2.6) LemMA. Let uy,..,u,_; be linearly independent, continuously
differentiable functions with uo=1. If n>2 and & is an essential point
Jor spluj,..u,_,} then there exist points Xgy..X,_; such that
U*(xoo ..... n—1 )7&0.

Progf. We apply induction on n. For n =2 we have

UN( () 1 0
u (&) ui(é) u (&) ui(®)

since £ is essential for sp{u;}. For n > 2 let x,,..., x,,_; be arbitrary points;

f — (&) %0,

then
O,...,n—1
U*( § )
x;,.u,xnw:{wé’é
n—1 , O,ni—1i+l.,n—1
I S N L -U*( A i e ) 2.7
— ( 1) ul(‘x(]) X ey x,,_;,é,f ( )

0
If for fixed x,,..,x,_;, (2.7) is identically zero as a function of x, then
by the linear independence of ug,..,u, ; we must have
(Ol Dt =0 (=0 to n—1). Were this to hold for all
Xy X,_ 3, the induction hypothesis would imply that £ is a vanishing point
for spluj,.,uf.ys Ui oty _y} (=1 to n—1) and hence for
Sp{u] e )1}

(2.8) LEMMA. If there exiSt DOIRIS Xgsus X;_3s Xpyses X,s SUCH thal
Xowen Xj 1y Xjypos Xp_g0 & & Xpppsen X,b and  {xge X, 5, & G
Xpy g Xp_ts Xpipoms Xt are T*sets for some 0<Lj<I—-2 and
[+ 1L k< n, then u, is differentiable at &, provided ¢ is an essential point
Jor U'.

Proof. For points x;_, <x << y<x,,,, we have
0,.,n )

Xgserrs Xjyeees Xy 13 Xy & Vs X4 {aeens X
1 ... 1 1 1
uxy) o udx,_ u X, ) eeu (X,
:(X““é)‘ (y"‘é) l(: 0) 1(‘ l) ](:I+l) l(:l 2)

0<U(

u,(x,) ""un(xj—l) U (X g o Ug(X, )
0 1 0 1 N
w & u, () wl&yl wx,,) - ux,)

u, [x’ é} un.(é) un(é9 y} un();H l) u/n("xn)
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where 1,|x, &} = (u{x) — 4;(E))/(x — &) (i =1 to n). Hence,

I I

0< “1(:’:&} ul(x.j ) u;{'\;;g 1) u{x; 5)

uﬂ(x()) e un(xj »—I) un(xj—% l) u,,(.\‘, 3)

I 0 0 i s
(&) wx &) o] utx ) ()

z‘i!’?(é) ui?{"“’ gvi a”{é- }‘i lll;’{'\‘." * ’} T Z‘N('\"H}é

We now assume without loss of generality that n —/ is even (otherwise we
replace lim by lim and vice versa). Expanding by the last row and letting
first p | & and then x T £ we see that the nonvanishing terms satisfy

Oé(ﬂl)'l [(liﬂunié' }’]k“ﬁju,,lvtéi)
y.4 xoe

U

|
2 . S-S .
Xgaene Lronn Xy 20 EE0 XL (e X,

that is, (—1)""'lim, ,u,[& p) = (=1)" "lim,., ,|x. &), If we employ the
same reasoning with respect to the T*-set {x,u..x; 5. & & X, i, .
Xy 41 X, b we may conclude that

(—D)" Nimu,lx, & 2 (—1)" ! 1{‘;&3 u,|& v
xi¢ » i

Thus

l_l_r_I’l unlé* y‘ 2 hm uu‘xﬂ él ; le u/zl*\" il 2 hm unlé‘ .1“‘

vif X X vod
implying the equality of each term. This demonstrates the existence and
equality of the one-sided derivatives £ (&) and f (&), and thus the differen-
tiability of fat &

We can now extend our differentiability result to the essential points of &/,

(2.9) THeorReM. If U’ is joined (n > 3) then u, is continuously differen-
tiable on the set of essential points of U’.

Proof. Let & be an essential point for U’. We show first that if u, is not
differentiable at ¢ then U’ is disjoined. By (2.6) there exist points

Xg< o <X, <8<, <o <X, , such  that  {x,...x, .. & &
Xy X, ) is a T*-set for U. Define
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o= 0 Ot = )

Xgyeees Xy 19 Xy Xy e X1 3565 G, Xyp s Xy

(t=0to/—2), and
vi(x)=U* ( 0,..n—1 )

Xoseons X125 Gy Gy Xy fymees X 13 Xy Xy [ genes Xy

(i=0+4+1ton—1); v, and v, can be defined so that {v,,..,v, ,}isa WT-
basis for U. Since u, is not differentiable at £, (2.8) implies that
Ugswns U;_, =0 0n |&, b) and v, .., U,_; =0 on (q, é] which in turn implies
that for points y, < --- < y,_, the determinant U( wrn-! ) vanishes unless
Yiia << Yy Now let {#,,...,7,_,} be a T-set for U’. Ifn, , > € then by
(2.2) any points pg,..., y,_, such that {<y,_,<#n,_, and y, , <7, <y,
({=1to n—1) are a T-set for U, in contradiction to what we have just
obtained. By continuity we may conclude that U'(, - ~!)=0 unless
1,y < & Similarly, this determinant vanishes if #,, , < ¢, so that from (1.18)
U’ is necessarily disjoined. We have thus shown that if U’ is joined then u,
is differentiable on the set of essential points of U’. The continuity of u/ then

follows from (1.11). 1§
Combining (2.4) and (2.9) yields

(2.10) CoroLLARY. If U’ is perfect, or U and U’ are joined then u, is
continuously differentiable in (a, b).

3. FURTHER RESULTS

In this section we present some further results concerning the convergence
of sequences of generalized convex functions and their derivatives. Initial
results along this line were given in |3, 7].

(3.1) DEFINITION. The generalized convex cone C(u,,..., u,_,) of a given
WT-system {uy,..., 4,_,} consists of sp{u,,..., u,_,} and all functions f such
that {uy,.., 4, _, f}is a WT-system.

C(ugs-s i, ) is indeed a convex cone and is closed with respect to
pointwise convergence of its elements.

The following useful definition was introduced in [3], a paper that msplred
much of the material in this section.

(3.2) DeFINITION. A sequence {f,} is said to converge nearly to f if for
every open interval I and every ¢ > O there is a K > 0 such that for every
k > K there is an x, € I for which |f,(x,) — f(x,)| < e.
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We note that if ||-|] is any seminorm on a space of functions F with the
property that for every ¢ > () and every open interval / there is a d > O such
that, for each f & F, |f(x) > ¢ for all x €= fl| > J. then convergence
with respect to the seminorm implies near convergence. Many commonly
used seminorms are of this variety, for example. the L -norm

Ty

Wb
1= (] Swopd)  a<p<o)

An equivalent, sometimes more convenient. definition for near
convergence is provided by Lemma 3.3.

(3.3) LemMma.  f, = [ nearly, iff for every x € (a.b) there is a sequence
X, = x such that | fi(x,) — f(x,)] -0

Proof. Let I be an open interval, ¢ >0, and let x& /. If x, - x and
| filx,) — fix,)| = O then there is a K, such that k > K, = x, € 1. and there is
a K, 2 K, such that k > K, = | fi.{x,) — f{x,) <& This proves one direction.
Conversely, let x € {(a, ) be given and denote I, = (x— (1//). x+ (1//))

=1/j for j> 1. For simplicity assume that 1_,C (a.b) for all j. If f, > f
nearly, then for each j we can choose a k(j) > k(/— 1) such that for all
k > k(j) there is a point x{’ € I, such that | fi(x{") — f(x{")] < ¢,. Define a

sequence {Y&} as follows: x,. ka y=x, and for all j> 1 x,,;, = x{.
Xkt + 1 = Xk 4 1o Xhis 1yt = kax) 1o Clearly, x,—x and | fi{x)—
Sx )i = 0.

(3.4) Remark. 1f f is continwous then an application of the triangle
inequality shows that f, — f nearly. iff for every x&(a,b) there is a
sequence x, — x such that | fi{x,)— f(x)|=0

In the following material we will occasionally use the notation

| ()(’Cn) e Uglxy,) |

U(o,...,n-l-f " : N
Xgaeee u, ,(/\(, ety X))
) e Sl

Note that f € Clugsnr #, ) iff Uy " 1) 2 0 for all x, < -ov < x,

(3.5) LemMma lcf. 3, Theorem 2.1]. Ler {uy.....u, ,} be a continuous
WT-system on  (a,b). If {fit<Cluye..u, ) converges nearly to a
continuous function [ then f € Cluga.. it, ).

Proof. Let a < x,< -+ <Xx,<b be given. Since f, — [ nearly. by (3.4)
there are sequences {x{¥'}7 | (/=0 to n) such that x{*' - x; and f(x{*) -~
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JS(x;). Moreover, by continuity u,(x{*')— u,x;) (i=0 to n— 1), hence, for
large enough k,

0<U( O,on— 15 f, n—l;f)

o " )—ﬂ-a' U< .
Xy X0 xW ] ke Xoseees X 15 Xy
Hence, f € Clugsr tty_;). B

(3.6) ExampLE. Let f.(x)=sin(kx) for x€&€ [0, 2n]; f, vanishes at
x = jn/k (j =0 to 2k), hence, since the set {(jn/k): j=0to 2k; k=1,..} is
dense in [0, 27}, f; — O nearly. However, f, -» O pointwise.

Our next result shows that under certain conditions near convergence does
imply pointwise convergence.

(3.7) THEOREM. Let {u,,...,u,_,} be a perfect WT-system of continuous
Sunctions on {a, b). If {f,} < Clug,..., 4, _,) converges nearly to a continuous
Sfunction [ then f,— f pointwise in {a. b).

Proof. Suppose that f, -» f, then there is a point & € (a, &), an ¢ > 0, and
a subsequence, which we relabel {f,}, such that

Q) =Sl >e  forallk (3.8)

By (3.5) /€ C(ugs---r 4,,_ ), hence & must be an essential point for U since
otherwise (1.5) implies that f,(¢) = f(&) = 0 for all k, contrary to (3.8). Thus,
(1.4b) guarantees the existence of points x,< - <x,_,<E=
X <Xppq <00 <X, osuch that {xg,..,X;_ ), XjoimsX,} and {Xgp X5,
X;4 1 X, } are T-sets for some 0 </~ 1 and I+ 1 <1< n, respectively.
Since {f,} is nearly convergent there exist sequences x{* =% (j=0ton)
such that

i) = fxP) =0  (j=0ton). 3.9)

Since & is an essential point there must be an element # € U such that
u{¢) > 0. With this u define

S
u@)

then g.(&) = fi(&) — f(&) for all k. We now show that (3.8) leads to a
contradiction. It suffices to consider the following cases:

Casel. x® 71 ¢&and (—1)""'g (&) <—
Case2. x| &and (—1)""'g, (&) >e.

&i(x) = filx) — < u(x),
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Case3. x¥'7¢and (—1)" gl
Cased. xV [ ¢Eand (—1)"" g, (&

For Case | we note that for large enough &

Opeesn — 11 f,

)<
)2 €.

0< U( )
(k) ’*(k) (k) (k) k)
‘xO . vx_,' x/ qé, X‘[* Larren Xy
= U ( 0 — g |
- (k) A( (k) (k) (k)
X B xR E X X
O.nnn—1

= (7l)n7]gk(é) : U ( \f(k) %U\') \,(kl ) ’F 0(1) as /&ﬁ’ 0.

A s A aen Ay

This is a result of the continuity of u,.... 4, , and (3.9). Since

o O ]
lim U ( A | = U( Ot ) >0
. |

- (k) 20k) . . A .
k—w X aeeen X7 wens X, X s X Xy
we may write O0< -¢-U(, """ )+o(l). which is clearly a

contradiction. The precedmg proof carries over verbatim to Case 2 after
switching the columns with x{*' and & in the determinant. In order to treat
Cases 3 and 4 we employ the T-set }xX;....X; . X, ,...X,} and proceed as
before. 1

"

Theorem 3.10 was proved in |13] under more restrictive assumptions on
U. However, the proof carries over almost intact with the aid of (1.5) and

(1.11).

(3.10) THEOREM. Under the conditions of (3.7). if 1/t < Cluysn i, |)
converges pointwise to a function [ then |/f,} converges unijbrmb' 1o / on
compact subsets of (a. b).

Combining (3.7) and (3.10), we get

(3.11) COROLLARY. Let the conditions of (3.7) prevail. If {f,}c
Cluy,.nt, ) converges nearly 1o « continuous function [ then the
convergence is uniform on compact subsets of (a, b).

We now consider sequences of derivatives, starting with a lemma on near
convergence.

(3.12) Lemma. Let g\ be a sequence of continuously differentiable
functions converging nearly to zero in (a.b). Then | gi| converges nearly to
zero in (a, b).
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Proof. Suppose that g;-» 0 nearly, then there is an ¢ > 0, an interval
(a,f)c<(a,b), and a subsequence, which we relabel {g;} such that
| gi(x) 2 ¢ for all k and all x € (a,f). Since g; is continuous there is a
o, = +1 such that g, gi(x) > ¢ for x € (a, ), and we may assume without
losing generality that all 6, = 1. Choose a < x, < x,; < f, then by assumption
there are sequences x{’ — x, and x{¥ - x, such that g,(x{*)—»0 (i=0,1).
For k large enough so that a < x{ < x{¥ < 8 we then have

xt0

gt — @) = | | gilx) dx > e —x (1), (3.13)
,XB )

This leads to a contradiction when k — oo since the left-hand side of (3.13)

goes to zero while the right-hand side approaches e(x, —x,) > 0. §

We are now prepared to prove our main theorem on the convergence of
sequences of generalized convex functions and their derivatives.

(3.14) THEOREM. Let {ug,..,u,_,} be a complete WT-system of
continuously differentiable functions on (a, b) with uy = 1, and assume that U
is joined and U’ is perfect. If | fi} = C(ugs.... 4,_,) converges nearly to a
continuous function f then f,— fand f,—- [’ uniformly on compact subsets

of (a, b).
Proof. Note that by (2.1) {uj,..u,_,} is a WT-system and

n—1
freCwi,..,u,_,) for all k. By (3.5) f&C(ugy,..,u4,_,), hence, (2.10)
asserts that f is continuously differentiable. Moreover, (3.12) implies that
Si— f' nearly, so we can take recourse to (3.11) to conclude that {f;} and
{fi} converge uniformly on compact subsets of (a,b) to f and f',

respectively. [l

4. EXAMPLES

In this section we present various examples of WT-systems that illustrate
the ideas formulated in the foregoing material. We start with a definition.

(4.1) DerFINITION. U is called nondegenerate if none of its nontrivial
elements vanish on open subintervals of the domain. U is called endpoint
nondegenerate (END) if no element vanishes on an interval of the form (a, &)

or (& b).

T-spaces (spaces spanned by T-systems) and WT-spaces of analytic
functions, such as polynomials, are examples of nondegenerate WT-spaces.
END WT-spaces are easily constructed (e.g., by taking a T-system and
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replacing its values on some interior interval by those obtained with linear
interpolation), however, such spaces seem to be rare in most applications.

(4.2) ExampLE. END WT-spaces are perfect. This is an immediate
consequence of (1.10) and the proof of (1.15). An application of either (1.9)
or (1.13) and the fact that every WT-space has a basis that is a complete
WT-system |9| gives Theorem 4.3, first presented in |14].

(4.3) THEOREM. [If U is END then it has a positive element iff it has no
vanishing points.

We now turn our attention to spline and “spline-like™ spaces. The basic
building blocks for such spaces are the power functions x' and the truncated
power functions defined by

(x =&Y, = (x— &Y. x2& (j=1l...
=0, Xx<& (= luo

For j =0, we define (x — &)% to be | if x> ¢ and zero otherwise.
In the next several examples ¢ is an arbitrary point in (a, b).

(4.4) EXAMPLE. Let wuy(x)=(x —&),.u,(x)=(x—¢&) . Since u,>0.
luyt is a WT-system. A simple calculation shows that {u,.u,! is also a WT-
system: in fact for x, <x,. U( ) > 0iff &<y, <x,. The system |u,} is
clearly disconnected, as is {u,.u,}. but {u,,u,! is joined since a point
7 € (a. b) is essential iff n € (£ b). and for all such points & < x, <y <
X, = {x,. 1} and {n, x,} are T-sets.

(4.5) EXAMPLE. Let uy(x) = (x — &), as before, and let u,(x) = (x — &)
Then {u,} is a disconnected WT-system, and {u,,u,} is a connected.
disjoined WT-system. Indeed, direct computation of the determinant of the
system shows that U(,\1 ) > 0if x, <&<x oré< Xy < x,.and we get zero
otherwise. Any point r]E (a. &) is essential, but U(” o 'y =0 for all x, <.
which shows that {u,., u,} is disjoined.

(4.6) ExampLE. Let uy(x)=|x—¢. u(x)=(x—¢).. Then {u,i 1s a
connected (in fact nondegenerate) WT-system, {u,, u,} is a WT-system but
is neither connected nor joined. Indeed, we have U(:} ) >0 if x, <& <,
and U( 2} )= 0 otherwise, from which our claims readllv follow.

(4.7) ExampLE. Let u, and u, be defined as in (4.6). and let w.(x)=
(x —&)?% One checks that U(Y?r'] ") >0, with strict inequality iff

Xy <X, <E<xy0r Xy < < x, <X, Thus {u,,u,.u,} is both connected and
joined, although {u,,u,} is neither.
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We now consider WT-spaces of spline functions. A polynomial spline of
degree k — 1 with simple knots £, < --- < £, is a function of the form

k—1 r
s(x)y= 3 ax'+ Y cx =& (4.8)
i~o =

It is well known [1] that the basis
{1 Xy X* 7 e — E DT, (0 — &R, 4.9)

for the space S, , of functions of the form (4.8) is a WT-system. Further,
{ Xy Xgpp} i @ T-set for S, , iff

X <&<xp,, (i=1tor). (4.10)

(4.11) THEOREM. The spline basis (4.9) is joined (and hence perfect) iff
k> 3.

Indeed, if k=2 then for {=¢,_, 2<I<r+ 1), {x;0m X, ,,} is a T-set
for S, , only if x;_; < & < x,, so that by (1.18), S, , is disjoined. For & > 2
we note that since X; <x;; <Xy, < Xppp, SES {Xg,., X} satisfying (4.10)
exist with & =x,,; or x,,,, hence, S, , is joined, at least as far as the ¢, are
concerned. However, one may easily check that a similar conclusion may be
drawn regarding the other points.

A similar result is valid when muitiplicities are allowed at the knots. A
spline of degree k—1 with knots & <--- <¢&, and corresponding
multiplicities {m;};_, is a function of the form

k—1 rooomy .
s(r)= N ax'+ Y N oeux— &N (4.12)
i=0 i=1j=1

We denote the space of such functions by §, ., where m = (m,,...,m,). The
basis

{l, Kysess xk— l, (x - él)’:‘ml""’ (-x - gl)i_ 13"'9
(x - ér);f&—mr’"'a (x - fr);iw 1}

is a WT-system, as Lemma 4.14 demonstrates.

(4.14) Lemma [5]. Let integers 1< m;<k (i=1 to r) be given and
denote n=k+ Y7 m;. Then for all a<{& <--- <& <b and all
a<x < - <x,<b,

U(an—1)>Q

Xys Xgsms Xp



SOME HEREDITARY PROPERTIES 133

with strict inequality ff x,; < & < X1y, 5. 1s where {ug...u, | denotes
the functions (4.13), {(i)=3";_,m; (i=1 to r), I(0)=0. If for some i,
m; =k then the determinant remains positive when ;= X,; .\, . ;.-

Suppose that u, is generalized convex with respect to the system (4.13).

that is {uy,...u,} is a WT-system. Then, with the aid of (4.14} we may
reason as in the case of simple knots and conclude as follows.

(4.15) THEOREM. If u, is generalized convex with respect to the
Sfunctions (4.13) then for k > 2, u, is continuous in {a, b\, .. &V I k> 2
then u, Is continuous at each & for which k —m; > 2. if k —m, > 2 for each i
then S, ., is joined.

With regard to differentiability of u,, we may apply (2.10) and derive

0t

N
3

(4.16) THEOREM. Under the same conditions as in (4.15). u'} ' Is

continuous in (a, DNIE, ... &y and u'l * ™" is continuous at & (i =1 tor).
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