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Let U be the WT-space spanned by a WT-system juo,"" un_lIon (a, b). A
function J is generalized convex with respect to ~ Uo,... , un _ I I if either J E U or
~uo,... ,un_"JI is a WT-system. We identity two rather general conditions
("connectedness" and "joinedness") that, when satisfied by U, guarantee the
transmittal of certain properties enjoyed by the elements of U to such an f We
characterize WT-spaces that satisfy these conditions and provide equivalent
formulations. Various examples are given and applications to spline functions are
considered. The main results are as follows: If U is connected then vanishing points
of U are zeros of f If U c qa, b) is connected and joined (i.e., "perfect") then
JE qa, b). If U', the space of derivatives, is a WT-subspace of qa, b) then
J E C' (a, b) provided U' is perfect or U and U' are joined. If U c qa, b) is perfect
then the convergence of a sequence lJk I of generalized convex functions to
J E qa, b) with respect to a fairly inclusive class of seminorms implies its uniform
convergence on compact subsets of (a, b). If U and U' are perfect and continuous
then this result extends to the sequence of derivatives Uk I as well.

INTRODUCTION

A set {U o,.", Un_I} of real-valued functions defined on a real interval is
called a WT-system (for "weak Tchebysheff") if it is linearly independent
and for all points XO<",<x n _ 1 in its domain det{ui(xj)}7,j~o;;:::O. The
linear span of such a system is called a WT-space. The best known example
(at least among numerical analysts) of a WT-system is furnished by the
polynomial splines, although the set {I, x, f} forms a WT-system whenever f
is convex [6,13]. Two useful references on WT-systems are [4,12]. Were
strict inequality to prevail in the above determinants we would speak of a
"T-system." As T-systems are particularly advantageous for numerical
applications [2], investigations into the qualitative differences between T
systems and WT-systems have been undertaken in recent years [see, e.g.,
8, 10, II]. These studies show that when the domain is an open interval WT-
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spaces are distinguished from T~spaces solely by the presence either of
functions that vanish on subintervals ("degeneracy") or of points in which
every element of the space vanishes ("vanishing points"). Functions that are
"generalized convex" with respect to a T~system, that is, that can be adjoined
to form a WT~system, possess many of the properties of the classical convex
functions. In an effort to extend these results to WT~systems, the author was
led to the notion of "endpoint nondegeneracy." A WT~space is endpoint
nondegenerate (END) if it contains no functions that vanish on a subinterval
extending to an endpoint 113, 14; although END is not explicitly defined
there]. Unfortunately, this notion is too restrictive as it excludes spaces of
spline functions. Two, more fundamental, properties ("connectedness" and
"joinedness") are therefore introduced in this paper in order to overcome this
unpleasant situation. Although one property was identified to deal with the
transmittal of vanishing points to generalized convex functions and the other
to handle continuity (we note, though, that END implies both connected and
joined), unexpected relations between the two concepts emerged. In Section I
we introduce these two notions and present some basic consequences.
Differentiability is treated in Section 2, and Section 3 is devoted to several
further properties of connected and joined WT systems. Examples are
deferred to Section 4.

1. BASIC RESULTS

Throughout this paper ju tP "" U" II and juo"'" u,,1 will denote WT
systems on an open interval (a, b), and U will stand for spju;fg '.
Continuity is not assumed unless explicitly stated. For points
xo,· ... X n I E (a, b) we denote

(
0, ... ,11'- I )' I

U , = det ju;(x) f;'.j II'

Xo,""X" I

Thus, for all Xo < ... < x" I < x"' we have

and '( 0,.... 11 \[; I ); 0.
,XO " ... x" '

When no confusion is likely to result we will occasionally write

to denote det~ui(x;)f(i 0'0" ',I Oto".j,U'

(1.1) DEFINITION. {XO,..o, X n - l } C (a, b) is called a J'-set for {,u o"'" un If

if x < ... < x and U( O.....n-I ) > 0.o n I xo.··· '·\n I
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(1.2) DEFINITION. ~ E (a, b) is called an essential point for U if u(~) =1= 0
for some U E U. Otherwise ~ is called a vanishing point.

Lemma 1.3 combines several elementary results from linear algebra in
terms of (1.2).

(1.3) LEMMA. Let A be a set with at least n points.

(a) Uo,'''' un- 1 are linearly independent on A iff det{u;(xJ }~-l =1= 0 for
some XO"",xn _ 1EA.

(b) If UO, ... ,un _ 1 are linearly independent on A then ~EA is a
vanishing point for sp{u; }~-l iff

U (
0,..., n - 1 )

=0
XO,·'" Xj _1 , ~, Xj + 1 , ... , Xn- 1

(j = 0 to n - 1),

for some {xo,'''' xn _ l } cA such that det{u;(xj)}~-l *- O.

(c) If Uo,..., Un -I are linearly independent on A and ~ E A is essential
then there are points XO"",xn _ 1 EA, including ¢, for which
det{u;(xJ}~-1 *- O.

(1.4) DEFINITION. (a) {u o,'''' un_d (or U) is called connected if for
every vanishing point ~E (a, b) there are points X o < ... <Xl_I <¢ <
X/<· .. <xn such that {xo '''''xj _l' xj+l""'xn } is a T-set for some
O~j~l-l, and {XO,''''xk _l' x k +l""'xn } is a T-set for some l<,k~n.

(b) {Uo,'''' Un-I} (or U) is called joined if n ~ 2 and, for every essential
point ¢ E (a, b), there are points Xo < ... <X'_l < ~ = x, <X,+ 1 < ... <xn

such that {xo,''''xj _ l , xj+I'oo.,x n } is a T-set for some O<j~I-1 and
{xO'''''Xk_1, Xk+1' ...,xn } is a T-set for some 1+ 1 <k<n.

(c) {u o,... , un _d (or U) is called perfect if it is both connected and joined.

Our first theorem concerns the transmittal of vanishing points to
generalized convex functions such as un'

THEOREM. If {uo , ... , Un _ I} is connected and ~ is a vanishing point for U
then un(C;) = O.

Proof Let x o,"" x n be points in (a, b) that satisfy (1.4a). Since ¢ is a
vanishing point we have
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hence,

Moreover,

from which we deduce that

(_I)" /un(~))O.

Theorem 1.5 now follows from (1.6) and (1.7). I
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(1.6 )

( 1.7)

(1.8) DEFINITION. {U o"'" Un 1 f is called a complete WT-system if
{uo,"" ut } is a WT-system for i = 0 to n - 1.

(1.9) COROLLARY. if lUo,"" Un I} is a complete WT-system on (a. b)

and {uo,... , ut f is connected for i = 0 to n ~ 2 then the vanishing points for U
are precise(v the zeros of U o' Consequently, if such a U has no vanishing
points then it contains a positive element.

(1.10) THEOREM. The following are equivalent:

(a) {u o"'" u" I f is not connected ("disconnected").

(b) there exists a point ~ E (a, b) and an 0 ~ I ~ n - I such that
{XO,... , X n - J I is Q T-setfor {uo ,..., un_I} only if X/_ 1 < ~ < XI'

(c) there is a WT-system {vo,"" vn I} C U, a vanishing point
~ E (a, b) and 0 ~ I ~ n - 1 such that va' ...' v/ 1 == 0 on I~, b) and
vp ... , vn _ J == 0 on (a, ~].

Proof (a) =:> (c). Suppose that {u o.·.·, un 1 f is disconnected. Then by
(1.4a), there is a vanishing point ~ such that for all Xo < ... <XI 1 < ~ <
x/ < ... <xn ' all O~j~l-l and l~k~n, one of {XO ...·.xi I. Xji 1.·· •• xllf
or {Xo"'" X k _ I' X k + J , ... , x n } is not a T-set. By (lJa) some T-set !x{), .... x n 1 f

exists, and we assume that x I __ 1 < ~ <XI' where 0 ~ I ~ n - 1. For j = 0 to
n - 1 define

( 0•..., n - 1
U .Xo,... , Xi-I' X, Xi-! I"'" X n

)IU ( ~,.... 11 -- 1 ) .
1 - / .•\() ••••• xI! I'
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Since viXi) = flu (i, j = 0 to n - 1) the v/s are linearly independent, hence
a basis for U. Moreover, if A is the (nonsingular) matrix corresponding to
this change of basis, then for all Yo,'''' Yn-I E (a, b),

(
0,... , n - 1 ) I ( 0,..., n - 1 )U =detA - . V .
Yo"'" Yn-I Yo,"" Yn-l

By substituting the points X o,... , x n _ 1 just defined we may deduce that
1Vo,... , vn _ d is a WT-system. Further, by our choice of X o,..., x n _ 1 and ~, we
must have Vo,... , v/_ 1 == 0 on [~, b) and VI"'" V n _ 1 == 0 on (a, ~]. This proves
(c ).

(c) => (b). Clearly 1Uo,..., un _d and 1vn,... , vn_d have the same T-sets. Let
Yo < ... < Yn- 1 ; then a direct calculation shows that

(
0, , n - 1 )

V Yo, , Yn-I.

(
0,... , 1- 1·) ( I, ..., n - 1 )= V . V
YO""'Y/-I Y/'''''Yn-I

= 0 otherwise;

thus (b) holds.
(b) => (a) is immediate from (l.4a). I

if Y1- I <~ <YI'

As with connectedness, joinedness guarantees the transmittal of a property
to all generalized convex functions, in this case continuity.

(1.11) THEOREM. If uo,..., Un-I are continuous and luo,'''' Un_I} is
joined then un is continuous at every essential point; if 1Uo,..., Un-I} is
connected then un is continuous at every vanishing point.

Proof Let ~ E (a, b) be an essential point and let X o < ... < X 1- I < ~ =
X/<XI+1<",<xn be the points guaranteed by (lAb). Let lil')} be a
sequence in (a, b) converging to ~. We assume that y(P) r ~; then for v large
enough that XI-I < y(p) < ~ we have

° (. 0,... , n - 1, n )
~ U A (p)

xo, ..·,xj,...,xl_l,y ,~,xI+I"",xn

= (_I)n-1 i (J:). U ( 0,..., n - 1 )un ... A (pI
Xo, ... ,Xj,... ,XI_1,Y 'X/+1'''''Xn

( (1'») U ( 0,... , n - 1 ) ~-u Y .
n Xo,"" Xj "'.' X n
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+ \'
; /+ I to"

and 0 to j J

+. \.' (_I)""; J (' U( O,.... n-I )Un·X;)· .• 0 <,,' •
i j+ I ·\O"···~ Xiv .... "\j'l""~ r ' ..... ~ Xu
to / J

where jxO,.... xi.\.xj+1,.... x"l is a T-set for 1u() •... ,u" II. By continuity of
Uo...., un -I' all but the first two of these terms vanish as .1"1-' T ~, hence we
may conclude that lim,. I )"-[(un(~l - U,,(y"1») ~ O.

A similar argument utilizing the T-set 1xo"'" X k I' X k + I ... ·' x n 1
(l+l<k<n) yields liml'~c.c(-I)" [J(u,,(~)-un(y'I"))~O, i.e.
lim,'~oo(-I)" l(U,,(~) - un(J,("j» <O. Thus, Iim,,~x(~I)" l(un(~) - U,,(y'll)
< 0 < lim,.~oo(-l)n-[(u,,(~) Un(y"'l», and hence UnC1,'I'!)--;un(~)' This
proves the continuity of un at every essential point ~.

The proof that un is continuous at every vanishing point of (/, under the
assumption that U is connected, is carried out in much the same fashion. We
assume that ~ is a vanishing point and consider points X o < '" < x/ I

~ < XI < ... < xn guaranteed by the assumption that (/ is connected. Then for

the T-set 1xo,.... x) I,X)I I ..... xnf. we write

(
0..... 11 I.ll

0< U ,. \.~ \' 1,'1"1 \' \'
, ~"O '1' ...... .i ..... ,. [ I". .. . 1..··· .. '" n

-_( .... lln.[+IU,,(.I"I").lI( 0..... ~1 ) (I) II" v-.- u" + 0 as .l' --; t;.
, ·\0 .. ···· .x.l"' ..... '\"1

which implies that llrn(-l)" (U,,{/'I) <O. By considering the Tset

jxO' ...'xkl'xk+I' ...• xnl U<k<n). we deduce that Iim(-l)" [u,,{/");;'O.
hence, unev("') --; O. Since by (1.5) u,,(~) = O. this proves the continuity of u"
at each vanishing point of U. I

In the remainder of this section we undertake the task of characterizing
joined WT·spaces. An initial step in this direction is Theorem 1.12.

(1.12) THEOREM. If jul),.... u"l is joined then the vanishing points of U
are transmitted to Ull'

Proof Suppose that U has a vanishing point ~ such that u,,(¢) '*' O. Since
{UI),...,u,,1 is joined, there are points xo<"'<x[
x[+ I < ... < x n +" a 0 <j <1- 1 and I + I <k <n + L
1xa,·..,xi .. I,XitI,,,,,xn+lf and jXO"",xk \. Xk+I"",X", If are
then

I <~= X[ <
such that
T-sets. But
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O (
0,..., n - 1, n )

<U "
xo,"" X k '· .. , X n + I

which implies (-ly~lun(~) > 0, a contradiction. I

(1.13) COROLLARY. If {uo,"" un~d is a complete WT-system such that
{uo,"" ud is joined for i = 1,..., n - 1 then the vanishing points for U are
precisely the zeros of uo. Thus if such a U has no vanishing points then it
contains a positive function.

(1.14) Remark. It is evident from the proofs of the preceding results that
(1.4a) and (lAb) are not the weakest possible definitions that would ensure
these results. For instance, to guarantee the transmittal of a vanishing point ~

to Un it suffices to find two T-sets Xo < ... < xj _ 1 < ~ < x j < ... < X n _ 1 and
Yo < ... < Yi-l < ~ < Yi < ... < Yn~1 such that i + j is odd. This is clearly a
weaker condition than (1.4a).

(l.l5) THEOREM. U is joined iff the vanishing points of all (n - 1)
dimensional WT-subspaces are vanishing points for u.

Proof. If U is joined then by (l.l2) the vanishing points of all (n - 1)
dimensional WT-subspaces are transmitted to U. To prove the converse,
assume that U is not joined ("disjoined"). Then there is an essential point
~E(a,b) such that for all xO<'''<XI_I<~=XI<xl+I<",<xn' all
O<,j<.l 1 and 1+I<.k<.n, one of {xo"",xj _l'xj+l'''''xn } or
{XO'''''xk _1' Xk+l , ...,xn } is not a T-set. Since ~ is essential (1.3c) guarantees
that aT-set {xo,"" xn-d, with ~ = XI for some 0 <,1 <. n - I, exists. We now
define Vo,..., vn _ 1 as in (1.10) and note that our choice of ~ requires that
Vo,..., vI_lOon [~, b) and vI +I"'" Vn~1 0 on (a, ~]. Concerning VI' we
can only state that VI(~) = 1. For arbitrary points Yo < ... < Yn-l one may
easily check that
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II ~_ I ( 0,.... n ~ 1 )
det~v(y)f· 0 = V

I } I.} Yo"'" Y
II

(

= V ( 0, ... , 1- 1 ) . V ( I, .... n 1

Yo"'" Y, I' YI····· YII I

if YI I < ¢ < YI. I and YI ~ ¢.

= V ( 0..... I) . V ( I + L. .. 11 1)
yo····· YI' . YI· I····· .l'". I
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=0

if YI I < ¢ < J'I. I and YI ~ ¢.

otherwise. ( 1.16)

By substituting X",,,, x" I for .1', .1'" I in (1.16) we get V(,I;......",.,I,)= I.
hence we may conclude that V(\I~; I\1 I, ) ~ °for all Yo < < YI I in (a. ¢ I
(for Y'_I = ¢ the determinant is zero). This implies that ~l'o'"'' I', I i is a
WT-system on (a,¢J. Similarly, we deduce that jv I + I ..... I·" Ii is a WI
system on I¢, b). We now demonstrate that jv o... ·• VI I' VI. 1..... 1." I i IS a
WT-system on (a. b). Indeed, since 1'0'"'' VI 1=0 on I¢.b) and
1'1+ ( •... , V" 1=0 on (a, ¢J. for any Zo < ... < z" 2 we have

V (0..... 1- 1./~1,.... 1I

... (l ~ ....... 11

= V ( ~ 1,- I) . V ( I -+- L. .. 11- I I
L O .:../ ] ... / , ...• .i.../ I :

if _, I < c: < z!'

=0 otherwise. ( 1. I 7)

Since we have shown that each of the determinants in the product (1.17) is

nonnegative. this proves that !V O..... 1'1 l' 1"t I ..... V" I: IS a WT-system.
Moreover, the vanishing point ¢ is not transmitted to U. I

(1.18) Remark. From the proof of (1.15) we may infer that C IS

disjoined iff there is an essential point ¢ and °~ I ~ n -- 1 such that

1x II"'" x" I i is a T-set for U only if XI I < ¢ < XI . I'

(1.19) COROLLARY. (a) If all (n I)-dimensional WT-subspaces of U
are connected then U is joined.

(b) If no (n ~ 1)-dimensional WT-subspaces of U have vanishing
points then U is joined.

Proof Both (a) and (b) imply that the vanishing points of all WT
subspaces are transmitted to U. hence. the conclusions follow from
(1.15). I

64lHI21
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2. DIFFERENTIABILITY

In this section we investigate conditions under which differentiability is
inherited by generalized convex functions. We therefore assume henceforth
that the functions uo,"" un - 1 are continuously differentiable in (a, b). In
addition, we restrict our attention to WT-spaces U such that U' , the space of
derivatives, is also a WT-space. Such WT-spaces have been characterized in
[15] :

(2.1) THEOREM. If U is a finite dimensional linear space of continuously
differentiable functions, containing constants, then U' is a WT-space iff U
has a basis {uo,"" un_If (n ~ 2) that is a complete WT-system with Uo == 1.
If this is the case then {u;,oo., U~_I} is itselfa complete WT-system.

(2.2) LEMMA. Let {uo,.00,u n_ 1} (n~2) be a complete WT-system with
Uo == 1. For points X o < ... < X n- 1 ,

(
0'00" n - 1 )U -0
XO,00"xn _ 1

(
l,oo.,n-l) I

iff u' = det{u;(IJ)}7.j.= 1= 0,
.1J1,oo·,lJn-1

for all Xi_I < lJi < Xi (i= 1 to n -1).

Proof

(
0,... , n - 1 )

U XO,,,,,x
n

_ 1

°
U1(X n _ l ) - U 1(X n _ 2)

(2.3 )

U~_I(IJI) ... U~-I(tln-l)

Since from (2.1) both {uo,"" Un-I} and {u;, ...,U~_I} are WT-systems and
u;,..., U~_l are continuous, Lemma 2.2 follows from (2.3). I

As with continuity, differentiability requires that we treat vanishing points
and essential points separately.
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(2.4) THEOREM. If Viis connected or V is joined, and n;;::, 2, then u:,
exists at each vanishing point of v' and vanishes there.

Proof Let ~ be a vanishing point for VI. If V'is connected then there

are points 'II < ... < 'II < ~ < 'It + 1< ... < 'I" such that 1111 ,.." '1/ I'

'1j+ 1"'" 'l"l is a T-set for V' for some 1~ j ~ I, and 111 1 , .... '1k I' 'lk! I ..... 'l" I
is a T-set for some 1 + 1 ~ k ~ n. For Xo ,.. " x" with Xo <
111 < XI < ... < 111 <Xl =''; < 'lit 1 < ... < 'l" <x". (2.2) indicates that
1xo,"" Xi_I' Xi' I , .... x" I and {xo,'''' x k I' x k t I , ... , x" fare T-sets for V. Thus,
for'; < x < x/+ I '

(
. 0,.... 11- I. 11 )

O~ V "
Xo.... , x/ 1.·\.I ..."~'X.XI' I .. ··'X"

o
u1(XO)'" ul (.;) ull';.xl U1(XI , I}'" ul(x,,)= (x -.;) .

where ud~,xl = (Ui(X)
determinant. we get
since u:(~)=O (i= I
utilizing the T-set
-I' (1)"-[ IV-I- Imx !; - u" ~.x

Ui(~))/(X'-~) (i= I to n). Expanding this
(-I)"-lu!.;,xl·V(.o ," I )+0(1) as xl';,n .xo ,.'I:! .... • X n ,j,.

to n-I). Hence. IimxH(-I)" lu"I';,x);;::'O. By
{xo,"" x k I' x k + I , ... , x" f we may infer that
I· I)" I 1 1J: oj' 0 hJ.!!1.xjt(-- u" (",.x ;;::, • ence.

which implies that lim, llll"I~.xl =, O. An analogous argument shows that
limx' l unl';, xl 0, so that ll;,(';) exists and is equal to zero.

If U is joined then. since'; is an essential point for U. there exist points

yO< .. ·<yl-I<~=yl<···<yn.a O~j~/-1 and f+l~k~11 such
that lYo .... ,YJ l'Yi+l, ... ,Y"f and (YO'.... Yk .. l'Yktl.· ..'Y"? are T-sets for U.
We may now proceed as before to show that u~(';) exists and is zero. I

(2.5) DEFINITION. We will say that jxo'..·.xl 2'';'';' XI' I.···..'" I( IS a
T*-set for V if X n < .. , < XI 2 <.; XI i 1 < .,. < X" 1 and

o< U* ( 0..", 11 - 1
xO'"'' XI 2'';'~' x I + I .... • ,\'n

I uO(:'o) .. , Uo~~) u(J(';) uolx l i I) .. , Uo(x" I}
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In order to prove a result similar to (2.4) about the essential points of V',
we need the next two lemmas.

(2.6) LEMMA. Let uo,"" U,,_I be linearly independent, continuously
differentiable functions with Uo == 1. If n ~ 2 and ~ is an essential point
for sp{u; '''', u~_d then there exist points xo,"" X"~3 such that
V*( 0•... ,"-1 )*0

XOl""Xn~3·l,l •

Proof. We apply induction on n. For n = 2 we have

I
Uo(~) ub(~) I I 1 ° I ,
UI(~) u;(~) = u!(~) u;@ I = u1@ *0,

* (. 0,... , n - 1 )
V x!,,,,,X"_3'~'~.

n\~'1 ,,!_I ) * (O, ...,i-l,i+ 1,...,n-l) (2.7)= (-1) uI(XO ' V .
~o Xl"'" Xn-3'~' e;-

If for fixed Xp..., Xn _ 3, (2.7) is identically zero as a function of Xo then
by the linear independence of Uo,..., u" _1 we must have
V*(O.... ,I-I.I+I, .... ,,-I)=O (i=O to n-l). Were this to hold for all

xl.··· .xn~3,l,I
X p"" X,,_ 3' the induction hypothesis would imply that ~ is a vanishing point
for sp{u; ,...,ui_1> ui+p..., u~_d (i = 1 to n - 1) and hence for
sp{u; ,..., U~_I}' I

since ~ is essential for sp{u;}. For n> 2 let xo,'''' X"_3 be arbitrary points;
then

(2.8) LEMMA. If there exist points XO,...'X I _ 2 ' X/+!""'Xn ' such that
{xo,'''' x j _ P xj +l"'" XI _ 2 ' ~, ~, x/+ 1 , ... , x,,} and {xo'"'' XI - 2 ' ~, ~,

X141 ,..., Xk _ I ' Xk +1 , ... , x n } are T*-sets for some °~ j ~ 1- 2 and
1+ 1~ k ~ n, then Un is differentiable at ~, provided ~ is an essential point
for v',
Proof. For points XI- 2 <x < ~ < y < X/+ 1, we have

°~ V (xo,... , xj , ... , x/_~':'~,~, y, x/+ 1 , ... , X,,)

1 1 1

= (x _~) . (y _~) ul(XO)·" U1(Xj _ l ) u1(xi+ I) ... U1(X I _2)

1 1

u1(x/+ I) ... u1(x,,)
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where utlx, ~I (ulx) - Ut(~))/{x -~) (i = 1 to /1). Hence,
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We now assume without loss of generality that /1 -I is even (otherwise we
replace lim by lim and vice versa). Expanding by the last row and letting
first y 1~ and then x t ~, we see that the nonvanishing terms satisfy

that is, (-I)n-/lim",lu"I~,yl?(--J)" /limx'lunlx,~I. If we employ the
same reasoning with respect to the T*-set lxo,.. ·.x l 2' ~. ~'X/_I ..... X' l'

x,~ I'''''Xn } we may conclude that

Thus

lim unl~, yl ? flV! Un!X, ~ I? lim u"lx, ~I ? lim ul1l~. Y I.
y ~ {, x i ~ -':.- -t {, .'•• to

implying the equality of each term. This demonstrates the existence and
equality of the one-sided derivatives 1'. (~) and I' (~), and thus the differen
tiability ofJ at~. •

We can now extend our differentiability result to the essential points of U'.

(2.9) THEOREM. IJ V' is joined (n ':? 3) then Un is cO/1tinuously differen
tiable 0/1 the set oj essential points oj VI.

Proof Let ~ be an essential point for Vf. We show first that if u" is not
differentiable at ~ then Viis disjoined. By (2.6) there exist points
XO<"·<XI.2<~<X/il<"·<Xn 1 such that jxo ...·.x/ ,. ~. ~.

x/+ 1,.... XII If is a T*-set for U. Define
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vi(X) = V* ( 0,... , n - 1 )
X o,"" Xi~ I' X, X i + I , •.. , XI_Z'~'~' x 1+ I , ••• , X n _ 1

(i = 0 to I - 2), and

( ) _ V* ( 0,..., n - 1 )v· x -
I x o"'" Xi_Z'~'~'x 1+ I , ••• , Xi_I' x, X i + 1 , ••• , X n _ 1

(i = I + 1 to n - 1); V1- 1 and VI can be defined so that jVo,... , V n _ I} is a WT
basis for U. Since un is not differentiable at ~, (2.8) implies that
vo,"" V I _ 2 = 0 on l~, b) and v l +1"'" vn _ 1 = 0 on (a, ~J, which in turn implies
that for points Yo < ... < Y n _ I the determinant V( y~:::: :~~~) vanishes unless
YI-2 <~<YI+I' Now let jl7l,... ,l7n-l} be a T-set for V'. Ifl7l_1 >~then by
(2.2) any points Yo'"'' Yn-I such that ¢"~ YI-Z < 171-1 and Yi-I < l7i < Yi

(i = 1 to n - 1) are a T-set for V, in contradiction to what we have just
obtained. By continuity we may conclude that V' (n\·:.......nn~~) = 0 unless
171- 1 < ¢". Similarly, this determinant vanishes if 171+ 1~ ¢", so that from (1.18)
V' is necessarily disjoined. We have thus shown that if V' is joined then Un

is differentiable on the set of essential points of V'. The continuity of u~ then
follows from (1.11). I

Combining (2.4) and (2.9) yields

(2.10) COROLLARY. If V' is perfect, or V and V' are joined then Un is
continuously differentiable in (a, b).

3. FURTHER RESULTS

In this section we present some further results concerning the convergence
of sequences of generalized convex functions and their derivatives. Initial
results along this line were given in [3, 7].

(3.1) DEFINITION. The generalized convex cone C(uo,'''' Un_I) of a given
WT-system juo,'''' Un-I} consists of spjuo,'''' Un-Ii and all functions f such
that juo,"" un-I,f} is a WT-system.

C(Uo ,'''' Un-I) is indeed a convex cone and is closed with respect to
pointwise convergence of its elements.

The following useful definition was introduced in [3], a paper that inspired
much of the material in this section.

(3.2) DEFINITION. A sequence Uk! is said to converge nearly to f if for
every open interval I and every t:: > 0 there is a K > 0 such that for every
k? K there is an xk E I for which Ifixk) - f(xk)1 < t::.
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We note that if 11·11 is any seminorm on a space of functions F with the
property that for every c > 0 and every open interval I there is a 6 > 0 such
that, for each f E F, If(x)j) c for all x I ~ Ilfll ) 6, then convergence
with respect to the seminorm implies near convergence. Many commonly
used seminorms are of this variety, for example, the Lf'~norm

h l'p

Ilfll = (.1' If(t)I P dt)
-0 .

(I ~ P < rIJ).

An equivalent, sometimes more convenient, definition for near
convergence is provided by Lemma 3.3.

(3.3) LEMMA. fk-> f nearly, iff for every x E (a, b) there is a sequence
X k -+ x such that Ifk(xk) ~ f(xk)l-+ O.

Proof Let I be an open interval, I; > 0, and let x E I. If Xk~' x and
Ifk(xk) - f(xk)! --> 0 then there is a K 1 such that k ) K! .C> Xk E /, and there is
a K 2 ) K 1 such that k) K 2 ~ Ifk(Xk) - !(xk)1 < G. This proves one direction.
Conversely, let x E (a, b) be given and denote I; = (x .~.. (I/j), x + (IIJ»,
f:i = 1/j for j) I. For simplicity assume that I; c (a, b) for all j. If f k -+ f
nearly, then for each j we can choose a k(j) > k(j - I J such that for all
k) k(j) there is a point X~l E I; such that IJ~(x~) - f(x"tJI < r i . Define a
sequence {xd as follows: Xl ....'Xkll)~1 =X, and for all j) I xk(j,=

XkU)+I=X~~)+l',,,,XkU~l) I X~Ii+I) I' Clearly, xk->x andlfk(xd-
f(xk)!--> O. I

(3.4) Remark. If f is continuous then an application of the triangle
inequality shows that fk --> f nearly, iff for every x E (a, b) there IS a
sequence Xk --> X such that ifk(Xk}~ f(x)l--> O.

In the following material we will occasionally use the notation

u (0..... n - I; f ) _
X o,"" x" . U" I(XOJ'" U" lex,,)

/(xo) ... f(x,,)

Not thatfEC(u U ) iff U(o 11·· l:f»0 for all X <···<x.e 0"'" 11 I x" x n ? 0 n

(3.5) LEMMA lcf. 3, Theorem 2.11. Let {uo'"'' un 1 ~ be a continuous
WT~system on (a, b). if Uk f c C(u!p... , U" J converges nearly to a
continuous function f then f E C (un ..... U" !).

Proof Let a < X o < ... < X n < b be given. Since fk --> f nearly. by (3.4)
there are sequences {xjk) ft 1 (j = 0 to n) such that XYI --> Xi and fk(Xjkl)-->
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J(XJ. Moreover, by continuity u/xYl) -4 ui(xj ) (i = °to n 1), hence, for
large enough k,

(
0,..., n 1; Jk ) U ( 0,..., n - 1; J )o<U (k} (k} --l> •

xO"",xn_l,xn k~ro xo,...,xn_I'xn,

(3.6) EXAMPLE. Let fk(x)=sin(kx) for xE [0, 27l']; Jk vanishes at
x = }7l'/k (j = °to 2k), hence, since the set {(j7l'lk):} = 0 to 2k; k = I,... } is
dense in [0, 27l'], Jk -40 nearly. However, Jk -,4 0 pointwise.

Our next result shows that under certain conditions near convergence does
imply pointwise convergence.

(3.7) THEOREM. Let {uo,'''' un-d be a perfect WT-system oj continuous
Junctions on (a, b). If {Jkf c quo,.'" Un_I) converges nearly to a continuous
function J thenJk-4 J pointwise in (a, b).

Proof Suppose that Jk -,4 f, then there is a point ~ E (a, b), an c > 0, and
a subsequence, which we relabel Ukf, such that

for all k. (3.8)

By (3.5) JE quo,'''' Un-I)' hence ~ must be an essential point for U since
otherwise (1.5) implies thatfk(~) = J(~) = 0 for all k, contrary to (3.8). Thus,
(lAb) guarantees the existence of points X o < '" < Xl_I < ~

X/<X I +1 < ... <xn such that {xo"",xj _ P Xj+I""'Xn} and {XO""'xi_P

xi+P"" xn } are T-sets for some 0 <}<1- 1 and 1+ 1<i <n, respectively.
Since {Jk} is nearly convergent there exist sequences xjk) xj (j = 0 to n)
such that

(j = 0 to n). (3.9)

Since ~ is an essential point there must be an element u E U such that
u(~) > O. With this u define

J(~)
gk(X)=Jk(X)- u(~)' u(x),

then gk(~) Jk(~) -- f(~) for all k. We now show that (3.8) leads to a
contradiction. It suffices to consider the following cases:

Case 1. XJk) i ~ and (_l)n-lgk@ <-e.

Case 2. xlk)1¢ and (_l)n-lgk(~)~ c.
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Case 3. X~k) T~ and (_I)" 'gk(~)';:;:; -c.

Case 4. xV) 1~ and (-1 )"-'gk(~) ~ t.

For Case 1 we note that for large enough k

(
0,.... n - 1; gk )

= U (k) "(k) (k) (k) (kl
X o ,... , xi .... , x, ,~, x ,+ I , .••• x,,:

as k ---> CJJ.

129

This is a result of the continuity of Uo.... , Il" 1 and (3.9). Since

I'. ,(' 0,.... n - I .) .._. r ( 0,.... n )
1m U (k) 'Ikl .1/" - L . ~ > 0

k~u.· . X o ,... , Xi .... , .X" . '\0"'" .X i ......X"

we may write 0 ,;:;:; I: . U(xlI.o );: I.,) + o( I). which IS clearly a
contradiction. The preceding proof carries over verbatim to Case 2 after
switching the columns with X)kl and ~ in the determinant. In order to treat

Cases 3 and 4 we employ the T-set jxO ..... x i I' Xi. I ..... x"i and proceed as
before. I

Theorem 3.10 was proved in [131 under more restrictive assumptions on
U. However, the proof carries over almost intact with the aid of (1.5) and
( 1.1 1).

(3.10) THEOREM. Under the conditions of (3.7). if U~: C(ulJ ..... u" I)

converges pointwise to a function f then U~ f cOI1L'erges uniformzl' to I on
compact subsets of (a. b).

Combining (3.7) and (3.10), we get

(3.11) COROLLARY. Let the conditions of (3.7) prevail. If U~ i c

C (uo,... , u,,_ I) converges nearly to a continuous function f then the
convergence is uniform on compact subsets of (a, b).

We now consider sequences of derivatives. starting with a lemma on near
convergence.

(3.12) LEMMA. Let 1gd be a sequence of continuously differentiable
functions converging nearly to zero in (a. b). Then I gk i converges nearzl' to
zero in (a, b).
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Proof Suppose that g~ -,4 °nearly, then there is an e > 0, an interval
(a, {3) c (a, b), and a subsequence, which we relabel {gk} such that
Ig~(x)1 ~ e for all k and all x E (a, {3). Since g~ is continuous there is a
ak = ± 1 such that ak gk(x) ~ e for x E (a, {3), and we may assume without
losing generality that all ak = 1. Choose a <X o <X I <{3, then by assumption
there are sequences X~k) -> Xo and X~k) ---> XI such that gk(xl k1 ) ---> °(i = 0, 1).
For k large enough so that a <X~k) < X~kl <{3 we then have

(3.13)

This leads to a contradiction when k ---> CX) since the left-hand side of (3.13)
goes to zero while the right-hand side approaches e(x i - xo) > 0. I

We are now prepared to prove our main theorem on the convergence of
sequences of generalized convex functions and their derivatives.

(3.14) THEOREM. Let {uo""'u n _ l } be a complete WT-system of
continuously differentiable functions on (a, b) with U o '= 1, and assume that V
is joined and Viis perfect. If {fd c C(uo,..., Un -I) converges nearly to a
continuous function f then fk -> f and f~ -> I' uniformly on compact subsets
of (a, b).

Proof Note that by (2.1) {u;, ..., U~_I} IS a WT-system and
fkEC(u;, ...,u~_I) for all k. By (3.5) fEC(uo'''''u n _ I), hence, (2.10)
asserts that f is continuously differentiable. Moreover, (3.12) implies that
fk ---> I' nearly, so we can take recourse to (3.11) to conclude that {fd and
{fk} converge uniformly on compact subsets of (a, b) to f and 1',
respectively. I

4. EXAMPLES

In this section we present various examples of WT-systems that illustrate
the ideas formulated in the foregoing material. We start with a definition.

(4.1) DEFINITION. V is called nondegenerate if none of its nontrivial
elements vanish on open subintervals of the domain. V is called endpoint
nondegenerate (END) if no element vanishes on an interval of the form (a, ~)

or (~, b).

T-spaces (spaces spanned by T-systems) and WT-spaces of analytic
functions, such as polynomials, are examples of nondegenerate WT-spaces.
END WT-spaces are easily constructed (e.g., by taking a T-system and
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replacing its values on some interior interval by those obtained with linear
interpolation), however, such spaces seem to be rare in most applications.

(4.2) EXAMPLE. END WT-spaces are perfect. This is an immediate
consequence of ( 1.10) and the proof of ( 1.15). An application of either (I.9)
or (1.13) and the fact that every WT-space has a basis that is a complete
WT-system [91 gives Theorem 4.3, first presented in [141.

(4.3) THEOREM. If U is END then it has a positil'e element iji it has no
vanishing points.

We now turn our attention to spline and "spline-like" spaces. The basic
building blocks for such spaces are the power functions Xl and the truncated
power functions defined by

(x - ¢y, = (x - ¢)i,

=0,

x ~ ¢ (j = 1....).

x < ¢ (j = 1.. .. ).

For j = 0, we define (x - ¢)~ to be I if x ~ ¢ and zero otherwise.
In the next several examples ¢ is an arbitrary point in (a, b).

(4.4) EXAMPLE. Let uo(x) = (x- ¢) I' ul(x) = (x- ¢)',. Since Uo ~ 0.
juo} is a WT-system. A simple calculation shows that jU o' u l f is also a WT

system; in fact for X o < x I' UC~),:~,l >°iff ¢ < X o < X I' The system IU o r is
clearly disconnected, as is IU o ' U Ii. but ~ U o' U I i is joined since a point
'7 E (a, b) is essential iff '7 E (¢. b), and for all such points ¢ < X o < '7 <
XI~ jXo,lJf and ~'7'Xlf are T-sets.

(4.5) EXAMPLE. Let uo(x) = (x - ¢) + as before, and let II I (x) = (x _ ¢) 2.

Then ~uo! is a disconnected WT-system. and juo' III i is a connected.
disjoined WT-system. Indeed, direct computation of the determinant of the

system shows that UC~,:~,) >°if X o < ¢ < X I or ¢ < X o < X I' and we get zero
otherwise. Any point '7 E (a. ¢) is essential, but U(\'::.;,) = 0 for all Xo < I).

which shows that juo' III f is disjoined.

(4.6) EXAMPLE. Let uo(x)=lx-¢I, III(X)=(x-¢). Then ~uof is a
connected (in fact nondegenerate) WT-system, ~uo' U I f is a WT-system but
is neither connected nor joined. Indeed, we have U(x~:::,) >° if X o < ¢ < x,
and UC~:~,) = °otherwise, from which our claims readily follow.

(4.7) EXAMPLE. Let Uo and U l be defined as in (4.6), and let u 2(x) =
(x - ¢)2. One checks that UC2.:;,·.2,,) ~ 0, with strict inequality iff
Xu < XI < ¢ < x 2 or X o < ¢ < Xl < x 2 • Thus ~uo' u" U 2 ! is both connected and
joined, although {Il o• U I f is neither.
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We now consider WT-spaces of spline functions. A polynomial spline of
degree k - I with simple knots ~I < ... < ~r is a function of the form

k-l r

s(x) = L aixi + L cix - ~j)~-l.
i=O j=1

It is well known [l] that the basis

{l k-I( j:)k-I (. j:)k-I}, X, ..., X , X - <, I + ,..., X - <'r + '

(4.8)

(4.9)

for the space Sk.r of functions of the form (4.8) is a WT-system. Further,
{XI>"" xk+r} is a T-set for Sk.r iff

Xi < ~i <X i +k (i = 1 to r). (4.10)

(4.11) THEOREM. The spline basis (4.9) is joined (and hence perfect) iff
k~3.

Indeed, if k=2 then for ~=~l-I (2~I~r+ 1), {xl""'x r +2 } is aT-set
for S2.r only if Xl_I < ~ <Xl + l so that by (1.18), Sz.r is disjoined. For k > 2
we note that since Xi < x i + I < X i +2 < X i + k ' sets {XI'"'' x k + r } satisfying (4.10)
exist with ~i=Xi+1 or x i + Z ' hence, Sk.r is joined, at least as far as the ~i are
concerned. However, one may easily check that a similar conclusion may be
drawn regarding the other points.

A similar result is valid when multiplicities are allowed at the knots. A
spline of degree k - 1 with knots ~I < ... <~r and corresponding
multiplicities {mIf;= I is a function of the form

k.-l r mi

s(x) = L aixi + \' \' cu(x - ~J~-j.
i=O i=lj=1

(4.12)

We denote the space of such functions by Sk,m' where m = (m l , ... , mr). The
basis

{l k-I( j:)k-rn1 ( j:)k-l, X, ... , X , X - <'1 + ,..., X - <'1 + ,...,

is a WT-system, as Lemma 4.14 demonstrates.

(4.14) LEMMA [5]. Let integers 1~mi~k (i= 1 to r) be given and
denote n = k +L;=I mi' Then for all a <';1 < ... <';r < b and all
a < XI < ... < X n < b,
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with strict inequality iff XI(I) < ~I < X IU _ I) +k I' where 1Un ,"" U" I} denotes
the functions (4,13), lei) 2.::;-1 mj (i= 1 to r), 1(0)=0, If for some i,
ml = k then the determinant remains positive when ~I = XII i I).". I'

Suppose that u" is generalized convex with respect to the system (4.13).
that is {uo"'" u"i is a WT-system. Then, with the aid of (4.14) we may
reason as in the case of simple knots and conclude as follows.

(4.15) THEOREM. If Un is generalized convex wilh respect 10 the
functions (4.13) then for k:;:' 2, u" is continuous in (a, b)\ {';I ..... ,;, f. (( k 2
then u" is continuous at each <;Jor which k m j :;:' 2: if k - m l :;:' 2 for each i
then Sk.m is joined.

With regard to differentiability of un' we may apply (2.10) and derive

(4.16) THEOREM. Under the same conditions as in (4.15). u:/, ') is
continuous in (a, b)\j(I ...., (,I and u;," , 111 i) is continuous at (I (i = 1 to r).
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